A blog by two chemists working in chemistry and chemical biology

Monday 25 February 2013

‘Arsenicals’

When I read the title of this paper – Arsenical-maleimide for the Generation of New Targeted Biochemical Reagents – I thought you’ve got to be kidding, but having perused the abstract, I realised that I had much to learn.

Thursday 21 February 2013

Quite interesting: Sodium bicarbonate

I suspect some people are reading that title thinking “really?” But the fact of the matter is that the synthesis of sodium bicarbonate was the first triumph of industrial chemistry and therefore the first entry of the private sector into the chemical arena, something that still sets chemistry apart from the other major academic sciences, biology and physics; this is one of the reasons that chemistry is so advanced today.


But why sodium bicarbonate, is it really that important? The obvious answer is yes, but for things that we all now take for granted; soap and white cotton shirts. If this still sounds weird the industrial synthesis of sodium bicaronbate was described in 1856 as “one of the great benefits, if not the greatest that modern science has bestowed on humanity” but why?

Sunday 17 February 2013

Reversible covalent inhibitors: the best of both worlds?


What’s not to love about covalent inhibitors? Well, unfortunately, quite a bit when you start thinking about it. Reversible inhibitors offer an extra layer of subtlety, they are tuneable, time-dependent and can modulate individual functions of proteins or biological systems by using several inhibitors in combination. That is as long as you can make them potent and selective enough; covalent inhibitors tend to solve the first problem in spades, once you make your covalent bond it’s staying there usually knocking out the enzyme target. Yet the greatest strength is the greatest weakness, unfortunately by improving the potency of your compounds the problems with selectivity are multiplied. If your covalent inhibitor goes to the wrong protein first well tough; this great if you’re a beta-lactam antibiotic trying to kill a bacterium, but killing things isn't what tool compounds are for. 

But what if you could make a reversible covalent inhibitor? Potentially you could gain the potency and, if well designed, the selectivity as well. Maybe this would still be difficult to incorporate into a drug, but as a basis for a sophisticated tool compound it could be extremely useful. Taunten et.al. have developed such a system that targets the amino acid cysteine. 

Monday 11 February 2013

A non-functioning tool? - when’s the next paper?

This paper from Feringa’s Lab caught our eye.  The paper demonstrates the ability to incorporate azobenzene photoswitches onto sites of interest through a bio-orthogonal reaction.  The group synthesised two azobenzenes (Figure 1), one with a short PEG motif and one without, evaluated their physical properties when ligated to various targets.

Thursday 7 February 2013

Shaking Up Small Molecule Binding


I’ll be honest I thought I knew a fair bit about small molecules binding to proteins. If someone asked me what a phenyl ring in a molecule was doing I could talk earnestly about the entropic effect of displacing those water molecules, stacking interactions, Van der Waals forces, maybe even pi-charge interactions. I could have also talked about hydrogen-bonding and I would have certainly mentioned the hydrophobic effect (mind you that is more complicated than it looks sometimes) and how a molecule rotates (i.e. the less carbon chains and more rings the better).

One thing I certainly would not have mentioned was how individual bonds vibrate, but what do I know? 2 recent papers talking about deuterium effecting how compounds smell  and another using the IR spectra of nitrile groups to explain the observed binding affinity of a family of HIV drugs demonstrate how what I think I know and what I actually know are sometimes a disappointing distance apart.